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Introduction

Introduction

Radon Transform (RT):

Categories: linear RT (slant stack), parabolic RT, hyperbolic
RT (stack velocity spectrum)...
Implementation: time domain, frequency domain
Application: denoising (Random noise and multiples),
interpolation, velocity analysis...

Problems of RT operator:

It’s not orthogonal like Fourier transform, wavelet transform ...
Loss of resolution and aliasing that arise as a consequence of
incomplete information
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Introduction

Introduction

Solution:

Zero-order regularization (Hampson, 1986; Beylkin, 1987)
Stochastic inversion (Thorson and Claerbout, 1985)
Sparse RT (Sacchi and Ulrych, 1995; Cary, 1998; Yilmaz and
Tanner, 1994; Herrmann, 1999; Trad et al. 2003)

Our work:

Improve resolution with faster sparse-promotion algorithms
Combine seismology with compressive sensing
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Theory and Implementation

Hyperbolic Radon Transform

HRT operator:

m(τ, v) =
xmax∑

x=xmin

d(t2 = τ 2 +
x2

v2
, x)

Adjoint of HRT operator:

d(t, x) =
vmax∑

v=vmin

m(τ 2 = t2 − x2

v2
, v)

Matrix form:
m = LTd

d = Lm
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Theory and Implementation

Sparsity Promotion Methods

Basis Pursuit (BP) problem:

min
m
{‖m‖1 : Lm = d}

Equivalent form of BP:

min
m
{‖Wmm‖22 : Lm = d}

where Wm = diag(m
− 1

2

i ) is weighting matrix.

Yujin Liu (TRIP) SRT with DGA TRIP Annual Meeting 8 / 30



Theory and Implementation

Sparsity Promotion Methods

Iteratively Reweighted Least-Squares (IRLS) method (Claerbout, 1992)

Non-linear inverse problem
Need to calculate weighting matrix at the outer loop of CG.

Conjugate Guided Gradient (CGG) method (Ji, 2006)

A variant of IRLS
Linear inverse problem
Only one calculation of L and LT is needed at each iteration.
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Theory and Implementation

Implementation of IRLS

Algorithm 1 IRLS method

1: for j = 0 · · ·miter do

2: compute Wj
m

3: rj,0 = LŴj
mm̂

j,0 − d
4: for k = 0 · · · niter do
5: dmk = ŴT ,j

m LT rj,k

6: drk = LŴj
mdm

k

7: (m̂k+1, rk+1)⇐ cgstep(m̂k, rk, dmk, drk)
8: end for
9: m̂j+1 = Ŵj

mm̂
j,niter

10: end for
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Theory and Implementation

Implementation of CGG

Algorithm 2 CGG method

1: r0 = Lm̂0 − d
2: for k = 0 · · · niter do
3: compute Ŵk

m

4: dmk = ŴT ,k
m LT rk

5: drk = Ldmk

6: (mk+1, rk+1)⇐ cgstep(mk, rk, dmk, drk)
7: end for

Yujin Liu (TRIP) SRT with DGA TRIP Annual Meeting 11 / 30



Theory and Implementation

Dual Gradient Ascent (DGA) Method

`1`2 problem:

min
m
{‖m‖1 +

1

2α
‖m‖22 : Lm = d}

Dual problem:

min
y
{g(y) = −dTy +

α

2
‖LTy − Proj[−1,1]n(LTy)‖22}

Gradient:
∇g(y) = −d + αL(LTy − Proj[−1,1]n(LTy))

where Proj[−1,1]n(x) projects x into [−1, 1]n.

Theorem

As long as the smooth parameter α is greater than a certain value, the solutions
for BP and `1`2 are identical. (Yin, 2010)
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Theory and Implementation

Dual Gradient Ascent (DGA) Method

Figure: Dual objective function g(y) (left); and its derivative ∇g(y) (right)
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Theory and Implementation

Dual Gradient Ascent (DGA) Method

Notes

Objective function g(y) is a convex function but its gradient ∇g(y) is not
smooth, hence, we can only apply first order methods to solve the dual problem.

Update scheme:
yk+1 = yk − δ∇g(yk)

mk+1 = α(LTy∗ − Proj[−1,1]n(LTyk+1))

where δ > 0 is the step size.

Theorem

It has been proved that the objective value of the primal problem given by m∗

matches the optimal value of the dual objective given by y∗. Hence, m∗ is also
optimal. (Yin, 2010)
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Theory and Implementation

Implementation of DGA with fixed stepsize

Algorithm 3 DGA with fixed stepsize

1: for k = 0, 1, · · · , niter do
2: yk+1 = yk + δ(d− Lmk )
3: mk+1 = α(LT yk+1 − Proj[−1,1]n (L

T yk+1))

4: end for
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Theory and Implementation

Implementation of DGAN

Several ways to speedup the fixed stepsize gradient ascent method:

Line search

Quasi-Newton methods, like LBFGS

Nesterov’s acceleration scheme

Main idea of DGAN

Instead of only using information from previous iteration, Nesterov’s
method use the usual projection-like step, evaluated at an auxiliary
point which is constructed by a special linear combination of the
previous two points. (Nesterov, 2007)
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Theory and Implementation

Implementation of DGAN

Algorithm 4 DGA with Nesterov’s acceleration

1: θ0 = 1, h > 0
2: for k = 0, 1, · · · , niter do

3: βk =
(1−θk )(

√
θ2
k
+4−θk )

2

4: zk+1 = yk + δ(d− Lmk )
5: yk+1 = zk+1 + βk (z

k+1 − zk )
6: mk+1 = α(LT yk+1 − Proj[−1,1]n (L

T yk+1))

7: θk+1 = θk

√
θ2
k
+4−θk
2

8: end for
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Numerical Tests

Synthetic data

Figure: (a) Original data; (b) Input data
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Numerical Tests

Inversion results

Figure: Inversion result with (a) CGG method; (b) DGAN method
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Numerical Tests

Reconstructed results

Figure: Reconstructed data with (a) CGG method; (b) DGAN method
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Numerical Tests

Residual

Figure: Residual with (a) CGG method; (b) DGAN method
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Numerical Tests

Residual model error

Figure: Relative model error curve of CGG method and DGAN method
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Numerical Tests

Real data

Figure: CMP gather after data binning
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Numerical Tests

Real data

Figure: Inversion result with (a) CGG method; (b) DGAN method
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Numerical Tests

Real data

Figure: Denoising and interpolation result with CGG method
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Numerical Tests

Real data

Figure: Denoising and interpolation result with DGAN method
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Conclusion and Discussion

Conclusion and Discussion

With the help of different transformation, most signals, including seismic
wave, can be expressed in a sparse form, which implies that sparsity is a
very important prior information in many applications.

A recently developed sparsity promotion method in compressive sensing is

introduced into geophysics. Compared to CGG method, DGAN outperforms

it in the following aspects:

The sparsity level of the solution is higher;
Reconstruction results have much less coherent noise;
More accurate solution can be obtained with a few iterations.

Challenges ⇒ Sparse representation of seismic wave.
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Conclusion and Discussion
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Conclusion and Discussion

Thank you!
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