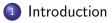
Sparse Radon Tansform with Dual Gradient Ascent Method

Yujin Liu^{[1][2]} Zhimin Peng^[2] William W. Symes^[2] Wotao Yin^[2]

¹China University of Petroleum (Huadong)

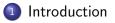
²Rice University

TRIP Annual Meeting



- 2 Theory and Implementation
- O Numerical Tests
- 4 Conclusion and Discussion

Overview



2 Theory and Implementation

3 Numerical Tests

4 Conclusion and Discussion

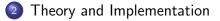
- Radon Transform (RT):
 - Categories: linear RT (slant stack), parabolic RT, hyperbolic RT (stack velocity spectrum)...
 - Implementation: time domain, frequency domain
 - Application: denoising (Random noise and multiples), interpolation, velocity analysis...

- Radon Transform (RT):
 - Categories: linear RT (slant stack), parabolic RT, hyperbolic RT (stack velocity spectrum)...
 - Implementation: time domain, frequency domain
 - Application: denoising (Random noise and multiples), interpolation, velocity analysis...
- Problems of RT operator:
 - It's not orthogonal like Fourier transform, wavelet transform ...
 - Loss of resolution and aliasing that arise as a consequence of incomplete information

- Solution:
 - Zero-order regularization (Hampson, 1986; Beylkin, 1987)
 - Stochastic inversion (Thorson and Claerbout, 1985)
 - Sparse RT (Sacchi and Ulrych, 1995; Cary, 1998; Yilmaz and Tanner, 1994; Herrmann, 1999; Trad et al. 2003)

- Solution:
 - Zero-order regularization (Hampson, 1986; Beylkin, 1987)
 - Stochastic inversion (Thorson and Claerbout, 1985)
 - Sparse RT (Sacchi and Ulrych, 1995; Cary, 1998; Yilmaz and Tanner, 1994; Herrmann, 1999; Trad et al. 2003)
- Our work:
 - Improve resolution with faster sparse-promotion algorithms
 - Combine seismology with compressive sensing

Overview



3 Numerical Tests

Hyperbolic Radon Transform

HRT operator:

$$m(\tau, v) = \sum_{x=x_{min}}^{x_{max}} d(t^2 = \tau^2 + \frac{x^2}{v^2}, x)$$

Adjoint of HRT operator:

$$d(t,x) = \sum_{v=v_{min}}^{v_{max}} m(\tau^2 = t^2 - \frac{x^2}{v^2}, v)$$

Matrix form:

$$\mathbf{m} = \mathbf{L}^T \mathbf{d}$$

 $\mathbf{d} = \mathbf{L}\mathbf{m}$

Sparsity Promotion Methods

Basis Pursuit (BP) problem:

 $\min_m \{ \|\boldsymbol{m}\|_1 : \boldsymbol{L}\boldsymbol{m} = \boldsymbol{d} \}$

Equivalent form of BP:

$$\min_{\mathbf{m}} \{ \| \mathbf{W}_{\mathbf{m}} \mathbf{m} \|_2^2 : \mathbf{L} \mathbf{m} = \mathbf{d} \}$$

where $\mathbf{W}_{\mathbf{m}} = diag(m_i^{-\frac{1}{2}})$ is weighting matrix.

Sparsity Promotion Methods

- Iteratively Reweighted Least-Squares (IRLS) method (Claerbout, 1992)
 - Non-linear inverse problem
 - Need to calculate weighting matrix at the outer loop of CG.
- Conjugate Guided Gradient (CGG) method (Ji, 2006)
 - A variant of IRLS
 - Linear inverse problem
 - Only one calculation of **L** and \mathbf{L}^{T} is needed at each iteration.

Implementation of IRLS

Algorithm 1 IRLS method

1: for $j = 0 \cdots$ miter do 2: compute W_m^j 3: $r^{j,0} = L\hat{W}_m^j\hat{m}\hat{n}^{j,0} - d$ 4: for $k = 0 \cdots$ niter do 5: $dm^k = \hat{W}_m^{j,j}L^Tr^{j,k}$ 6: $dr^k = L\hat{W}_m^j dm^k$ 7: $(\hat{m}^{k+1}, r^{k+1}) \leftarrow \text{cgstep}(\hat{m}^k, r^k, dm^k, dr^k)$ 8: end for 9: $\hat{m}^{j+1} = \hat{W}_m^j \hat{m}^{j,niter}$ 10: end for

Implementation of CGG

Algorithm 2 CGG method

Dual Gradient Ascent (DGA) Method

 $\ell_1\ell_2$ problem:

$$\min_{\mathbf{m}} \{ \|\mathbf{m}\|_1 + \frac{1}{2\alpha} \|\mathbf{m}\|_2^2 : \mathbf{L}\mathbf{m} = \mathbf{d} \}$$

Dual problem:

$$\min_{\mathbf{y}} \{ g(\mathbf{y}) = -\mathbf{d}^{\mathsf{T}} \mathbf{y} + \frac{\alpha}{2} \| \mathbf{L}^{\mathsf{T}} \mathbf{y} - \operatorname{Proj}_{[-1,1]^n} (\mathbf{L}^{\mathsf{T}} \mathbf{y}) \|_2^2 \}$$

Gradient:

$$\nabla g(\mathbf{y}) = -\mathbf{d} + \alpha \mathbf{L} (\mathbf{L}^{\mathsf{T}} \mathbf{y} - \operatorname{Proj}_{[-1,1]^n} (\mathbf{L}^{\mathsf{T}} \mathbf{y}))$$

where $\operatorname{Proj}_{[-1,1]^n}(\mathbf{x})$ projects \mathbf{x} into $[-1,1]^n$.

Theorem

As long as the smooth parameter α is greater than a certain value, the solutions for BP and $\ell_1\ell_2$ are identical. (Yin, 2010)

Theory and Implementation

Dual Gradient Ascent (DGA) Method

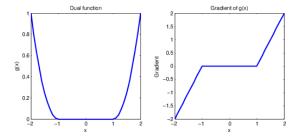


Figure: Dual objective function $g(\mathbf{y})$ (left); and its derivative $\nabla g(\mathbf{y})$ (right)

Dual Gradient Ascent (DGA) Method

Notes

Objective function $g(\mathbf{y})$ is a convex function but its gradient $\nabla g(\mathbf{y})$ is not smooth, hence, we can only apply first order methods to solve the dual problem.

Update scheme:

$$\mathbf{y}^{k+1} = \mathbf{y}^k - \delta \nabla g(\mathbf{y}^k)$$
$$\mathbf{m}^{k+1} = \alpha (\mathbf{L}^T \mathbf{y}^* - \operatorname{Proj}_{[-1,1]^n} (\mathbf{L}^T \mathbf{y}^{k+1}))$$

where $\delta > 0$ is the step size.

Theorem

It has been proved that the objective value of the primal problem given by \mathbf{m}^* matches the optimal value of the dual objective given by \mathbf{y}^* . Hence, \mathbf{m}^* is also optimal. (Yin, 2010)

Implementation of DGA with fixed stepsize

Algorithm 3 DGA with fixed stepsize

1: for
$$k = 0, 1, \dots, niter$$
 do
2: $\mathbf{y}^{k+1} = \mathbf{y}^k + \delta(\mathbf{d} - \mathbf{Lm}^k)$
3: $\mathbf{m}^{k+1} = \alpha(\mathbf{L}^T \mathbf{y}^{k+1} - \operatorname{Proj}_{[-1,1]^n}(\mathbf{L}^T \mathbf{y}^{k+1}))$
4: end for

Implementation of DGAN

Several ways to speedup the fixed stepsize gradient ascent method:

- Line search
- Quasi-Newton methods, like LBFGS
- Nesterov's acceleration scheme

Main idea of DGAN

Instead of only using information from previous iteration, Nesterov's method use the usual projection-like step, evaluated at an auxiliary point which is constructed by a special linear combination of the previous two points. (Nesterov, 2007)

Implementation of DGAN

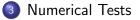
Algorithm 4 DGA with Nesterov's acceleration

1:
$$\theta_0 = 1, h > 0$$

2: for $k = 0, 1, \dots, niter$ do
3: $\beta_k = \frac{(1-\theta_k)(\sqrt{\theta_k^2 + 4} - \theta_k)}{2}$
4: $\mathbf{z}^{k+1} = \mathbf{y}^k + \delta(\mathbf{d} - \mathbf{Lm}^k)$
5: $\mathbf{y}^{k+1} = \mathbf{z}^{k+1} + \beta_k(\mathbf{z}^{k+1} - \mathbf{z}^k)$
6: $\mathbf{m}^{k+1} = \alpha(\mathbf{L}^T \mathbf{y}^{k+1} - \operatorname{Proj}_{[-1,1]^n}(\mathbf{L}^T \mathbf{y}^{k+1}))$
7: $\theta_{k+1} = \theta_k \frac{\sqrt{\theta_k^2 + 4} - \theta_k}{2}$
8: end for

Overview

2 Theory and Implementation



Synthetic data

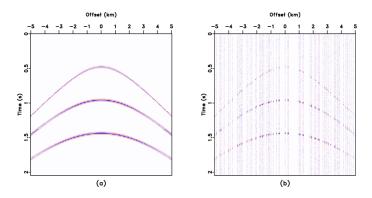


Figure: (a) Original data; (b) Input data

Inversion results

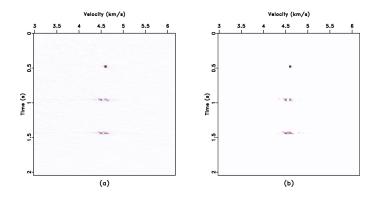


Figure: Inversion result with (a) CGG method; (b) DGAN method

Reconstructed results

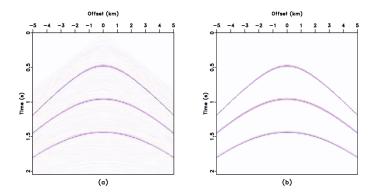


Figure: Reconstructed data with (a) CGG method; (b) DGAN method

Residual

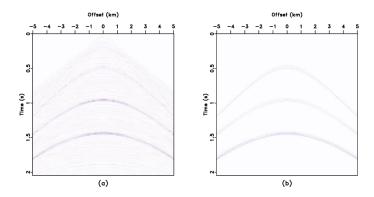


Figure: Residual with (a) CGG method; (b) DGAN method

Residual model error

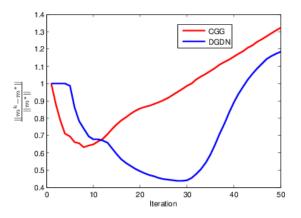


Figure: Relative model error curve of CGG method and DGAN method

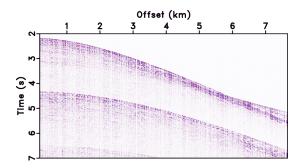


Figure: CMP gather after data binning

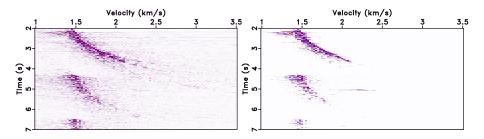


Figure: Inversion result with (a) CGG method; (b) DGAN method

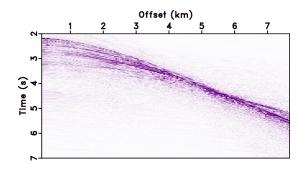


Figure: Denoising and interpolation result with CGG method

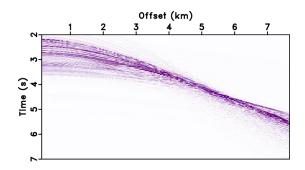


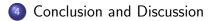
Figure: Denoising and interpolation result with DGAN method

Overview

1 Introduction

2 Theory and Implementation

3 Numerical Tests



Conclusion and Discussion

- With the help of different transformation, most signals, including seismic wave, can be expressed in a sparse form, which implies that sparsity is a very important prior information in many applications.
- A recently developed sparsity promotion method in compressive sensing is introduced into geophysics. Compared to CGG method, DGAN outperforms it in the following aspects:
 - The sparsity level of the solution is higher;
 - Reconstruction results have much less coherent noise;
 - More accurate solution can be obtained with a few iterations.
- Challenges \Rightarrow Sparse representation of seismic wave.

Acknowledgments

- Thank Min Yan and Hui Zhang for helpful discussion!
- Thank CSC for supporting my visit to TRIP!
- Thank TRIP for hosting me!
- Thank the sponsors of TRIP for their support!

Thank you!