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ABSTRACT

In this paper, a novel framework of sparse kernel learning for
Support Vector Data Description (SVDD) based anomaly de-
tection is presented. In this work, optimal sparse feature se-
lection for anomaly detection is first modeled as a Mixed In-
teger Programming (MIP) problem. Due to the prohibitively
high computational complexity of the MIP, it is relaxed in-
to a Quadratically Constrained Linear Programming (QCLP)
problem. The QCLP problem can then be practically solved
by using an iterative optimization method, in which multiple
subsets of features are iteratively found as opposed to a sin-
gle subset. The QCLP-based iterative optimization problem
is solved in a finite space called the Empirical Kernel Feature
Space (EKFS) instead of in the input space or Reproducing
Kernel Hilbert Space (RKHS). This is possible because of the
fact that the geometrical properties of the EKFS and the corre-
sponding RKHS remain the same. Now, an explicit nonlinear
exploitation of the data in a finite EKFS is achievable, which
results in optimal feature ranking. Experimental results based
on a hyperspectral image show that the proposed method can
provide improved performance over the current state-of-the-
art techniques.

Index Terms— Sparse kernel learning, Optimal feature
selection, Empirical kernel feature space, Empirical kernel
map

1. INTRODUCTION

Feature selection for learning algorithms aims to find a rele-
vant subset of features that can improve the learning perfor-
mance by discarding features not useful or even harmful for
the given tasks. In the case of kernel-based anomaly detec-
tion, such as SVDD, the feature selection requires the accu-
rate estimation of the contribution of each feature to the ob-
jective function, i.e., the radius of a hypersphere in the RKHS.

In this paper, a new framework of optimal sparse kernel
learning for SVDD-based anomaly detection (OSKLAD) is
proposed. The proposed OSKLAD optimally extends the fea-
ture selection technique used for the kernel-based learning

approaches [1] into SVDD-based anomaly detection by ful-
ly optimizing the feature selection method for nonlinear k-
ernels in a newly defined finite space called the EKFS [2].
Hence, the OSKLAD can be considered as a fully optimized
version of the wrapper approach to the SVDD-based anoma-
ly detection with nonlinear kernels. The initial objective of
the proposed OSKLAD begins with finding a single subset
of original features that can be used to build an optimal hy-
persphere in the RKHS. This objective can be modeled as a
Mixed Integer Programming (MIP) problem. However, the
MIP problem is NP-hard, and so the MIP model is relaxed in-
to a Quadratically Constrained Linear Programming (QCLP)
problem [3] by converting the objective function of the MIP
problem into lower bounded quadratic inequality constraints.
This QCLP problem is yet intractable due to the prohibitive-
ly large number of the inequality constraints. To address this
issue, a cutting plane method based on the restricted master
problem coupled with Multiple Kernel Leaning (MKL) [4] is
iteratively used. The goal is to find only a small subset of
the inequality constraints that are actively used to define the
feasible region of the parameters of the given QCLP problem.

The active constraints are effectively identified by find-
ing the most violating constraints instead whose half-planes
maximally violate the corresponding inequality constraints.
Therefore, the task becomes finding multiple subsets of most
violated features associated with the corresponding most vio-
lating constraints given the objective function, such as the ra-
dius of a hypersphere in the RKHS. However, finding the most
violating constraints also becomes a combinatorial problem,
if nonlinear kernels, such as Gaussian RBF kernel or high
order polynomial kernels, are used, due to the prohibitively
large number of possible combinations (subsets) of the origi-
nal features. To tackle this issue, in the proposed OSKLAD,
the most violated features are found in the EKFS. The EKFS
is a finite space linearly spanned by basis vectors, which are
generated by a map, called the Empirical Kernel Map (EK-
M). It is shown that the EKHS and the corresponding RKHS
constructed by using the same kernel function have the same
geometrical property. This means that solutions of any opti-
mization problem obtained from either space are identical. In



the proposed OSKLAD, the subsets of the most violated fea-
tures are optimally found in the EKFS since individual feature
ranking in terms of contribution to the radius in the EKFS can
be performed optimally based on the property of canonical
dot product and the finite dimensionality of the space.

2. OPTIMAL SPARSE KERNEL LEARNING

In this section, we present an optimal sparse kernel learning
for anomaly detection (OSKLAD) using SVDD as a basic
building block. Inspired by the feature selection approach for
the kernel-based classification [1], the OSKLAD addresses
the problem of the optimal feature selection for the SVDD-
based anomaly detection. The basic formulation of OSKLAD
is to minimize the radius of the enclosing hypersphere while
allowing outliers except that in OSKLAD, only a subset of
features is used. So, the model is described as a mixed inte-
ger programming problem:

min
d

min
R,ξi,a

R2 + C ·
N∑
i=1

ξi

subject to ‖Φ(x̃i)− a‖2 ≤ R2 + ξi

ξi ≥ 0

x̃i = xi � d, i = 1, 2, ..., N,

(1)

where d ∈ D = {d|dj ∈ {0, 1},
∑M
j=1 dj = B, j =

1, 2, ...,M}, and � represents elementwise product. Here
B is a threshold that controls the number of features that are
selected. If one assumes that d is fixed in Eq. 1, it turns
into a continuous constrained optimization problem just like
a standard SVDD. By applying the Langrange multipliers and
KKT conditions to it, we can derive the dual problem (similar
to standard SVDD) as:

min
d

max
αi

N∑
i=1

αik(x̃i, x̃i)−
N∑
i=1

N∑
j=1

αiαjk(x̃i, x̃j)

subject to
N∑
i=1

αi = 1

0 ≤ αi ≤ C
x̃i = xi � d, i = 1, 2, ..., N.

(2)

However, one should notice that Eq. 2 is still a mixed in-
terger programming (MIP) problem due to the last constraint,
which is computationally expensive to solve. In order to solve
this problem, it can be converted into a Quadratically Con-
strained Linear Programming (QCLP). We define S(α,d) =∑N
i=1 αik(x̃i, x̃i) −

∑N
i,j=1 αiαjk(x̃i, x̃j), and introduce an

additional parameter t to obtain the QCLP equivalent of (2)

as follows:

max
a,t

t

subject to
N∑
i=1

αi = 1

0 ≤ αi ≤ C
t ≤ S(α,d), ∀ d ∈ D.

(3)

Though Eq. 3 is convex, a large number of inequality con-
straints (last condition in Eq. 3) makes it impractical to be
solved by existing techniques. The number becomes huge if
the features reside in a high dimensional space. Note that not
all the inequality constraints used in Eq. 3 are actively used in
defining the feasible region of the optimization problem. In
fact, only a small number of the constraints are useful and di-
rectly used to solve the optimization problem. Therefore, an
iterative algorithm can be used, in which instead of solving
Eq. 3 at once, an intermediate solution pair (t, α) is itera-
tively updated based on a limited subset of previously found
active constraints. This optimization problem is called the re-
stricted master problem, which is closely related to the cutting
plane algorithm described in [5]. The restricted master prob-
lem consists of two steps [6]: 1) (t, α) are optimized based on
a previously found restricted subset I of features, which max-
imally violates the constraints; and 2) a new vector d of the
most violated features is obtained based on newly optimized
(t, α) in step 1 and added to the restricted subset I = I

⋃
d.

These two steps are iterated until convergence [7]. Finding d
of the most violated features is detailed in the next subsection.

The intermediate solution pair (t, α) is now obtained from
the following optimization problem

max
a,t

t

subject to
N∑
i=1

αi = 1,

0 ≤ αi ≤ C,
t ≤ S(α,dl), dl ∈ I.

(4)

Let µl ≥ 0 be the dual variable for each constraint in Eq. 4.
The Lagrangian of Eq. 4 can be written as:

L(t, µ) = t+

p∑
l=1

µlS(α,dl). (5)

By setting ∂L
∂t = 0, we have

∑p
l=1 µl = 1. The Lagrangian

L(t, µ), after applying this partial KKT condition, can be
rewritten as L(t, µ) =

∑p
l=1 µlS(α,dl), which transforms



(3) to the following problem:

max
α

min
µ

p∑
l=1

µlS(α,dl)

subject to
N∑
i=1

αi = 1

0 ≤ αi ≤ C for i = 1, 2..., N
p∑
l=1

µl = 1, µl ≥ 0 for l = 1, 2..., p.

(6)

One can observe that can be solved using a two-step iterative
process to obtain optimal sparse weights of individual kernels
µ and optimal lagrange multipliers α∗ (which define the sup-
port vectors or the enclosing hypersphere).

3. OPTIMAL FEATURE SELECTION: FINDING
MAXIMALLY VIOLATING FEATURES

For updating d, the features that maximally violate the last
constraint in Eq. 3 need to be determined. Since the goal of
Eq. 3 is to maximize t, and it is upper-bounded by S(α,d)
according to the constraint, the features that maximally vio-
late this constraint will minimize S(α,d). One has to solve
the following optimization problem:

min
d
S(α,d)

subject to
M∑
i=1

di = B

di ∈ {0, 1}.

(7)

In this section, we describe the method to find these feature
vectors for both linear kernel and non-linear kernel.

3.1. Linear Kernel

If a linear kernel is used, since k (xi, xj) = 〈xi, xj〉, we
have S(α,d) =

∑M
j=1 djcj , where cj =

∑N
i=1 αix

2
ij +

(
∑N
i=1 αixij)

2. S(α,d) is a linear function of d. Once we
have optimal support vectors, the global solution of d can be
easily obtained by sorting cj’s in ascending order and setting
the first B corresponding elements in d, dj to 1 and the rest
to 0. Once the optimal feature subset is chosen for a kernel,
optimal α and µ are updated by solving Eq. 6. These two
steps are repeated until the algorithm converges.

3.2. Non-linear Kernel

If a Gaussian RBF kernel is used, S(α,d) is not a linear func-
tion of d. We cannot solve the problem in Eq. 7 optimally
because of the large number of combinations of features that
have to be considered. So, the data is tranformed from infinte

dimensional RKHS into another space called empirical kernel
feature space (EKFS) with finite dimensionality using empir-
ical kernel map (EKM). This will allow us to select subsets
of features optimally while still preserving the nonlinear cor-
relations among the features. For a given set of training data
points {xi}ni=1, the map defined by

Φn : Rn → Rn where x 7→ k (·, x) = (k (x1, x) , . . . , k (xn, x))
T

(8)
is called the EKM with respect to {xi}ni=1 [2]. However, the
kernel function k used to build kernel matrices in previous
subsections cannot be represented using Φn, since they do
not form an orthonormal system. The dot product to use in
the representation of k is the not the canonical dot product in
the EKFS Rn. In order to turn Φn into a feature map associ-
ated with k, EKFS is endowed with a dot product 〈·, ·〉n such
that k(xi, xj) = 〈Φn (xi) ,Φn (xj)〉n. After analyzing certain
conditions using this equality as shown in [2], the dot product
〈·, ·〉n can be converted to a canonical dot product by mere-
ly whitening the EKFS and using the new basis functions as
features. It can be represented as

k(xi, xj) = 〈Φwn (xi) ,Φwn (xj)〉 , (9)

where the feature map in whitened EKFS is given by

Φwn : x 7→ K− 1
2 (k (x1, x) , . . . , k (xn, x))

T
. (10)

whereK is the Gram matrix andKi,j = k(xi, xj). The kernel
function in Eq. 9 is used to build the kernel matrices in Eqs.
2-7. Hence, the feature subset selection problem turns exactly
into (7) (linear version) except for the fact that in this case the
features are selected in EKFS. Similar to the OSKLAD with a
linear kernel, the overall Optimal Sparse Kernel Learning for
Anomaly Detection (OSKLAD) in the EKFS is described in
Algorithm 1.

Algorithm 1 OSKLAD with nonlinear kernel
1: Map the data points into the EKFS by using a certain k-

ernel k
2: Initialized: α = 1

N 1, find the maximally violating feature
subset d, and set I = {d}.

3: Run SKAD based on the kernel matrices generated by I
and optimize for α and µ.

4: Find the next maximally violated feature subset d based
on the current α and µ and set I = I

⋃
{d}.

5: Repeat steps 3-4 until convergence.

4. SIMULATION RESULTS

In this section, the performance of OSKLAD is evaluated
on a hyperspectral digital imagery collection experimen-
t(HYDICE) image, which contains 30 small painted pannels
located in the background. We chose a small patch (69 pixels



× 10 pixels) as the background data set, which is used to
obtain the radius R and the center of the hypersphere. The
distance of each test pixel in the image to the center of the
hypersphere is determined. If the distance is greater than
R, the pixel is considered as an anomaly, otherwise, it is
a background pixel. In our experiments, the performance
of SVDD, SKAD [8]1 and OSKLAD with both linear and
Gaussian RBF kernels are compared with one another. For
SVDD and SKAD, both linear and Gaussian RBF kernel are
used in the input space. For OSKLAD with linear kernel,
feature selection is performed in the input space. However,
for OSKLAD with Gaussian RBF kernel, the input vector is
first mapped into EKFS using EKM. At this point, we can just
use linear kernel in EKFS, which translates to using Gaussian
RBF kernel in the input space as described in the previous
sections. The kernel bandwidth parameter is determined by
implementing the minimax technique on randomly selected
10 regions of the image to represent the background as done
in [9]. The same value is used over all the test pixels in the
image for all the algorithms.

The number of features used for each hypersphere of
SKAD with both linear and Gaussian RBF kernel and OS-
KLAD with linear kernel is 75, which is half of the total
number of features. For OSKLAD in the EKFS, the total
number of features available after mapping the pixels from
input space to EKFS is reduced to 96, and we have used
48 features for each hypersphere. Fig.1 shows the anomaly
detection results for SVDD, SKAD and OSKLAD with both
linear and Gaussian RBF kernels. The value of each pixel in
the results is the ratio of the distance between the pixel and
the radius of the hypersphere. For comparison, we normalize
the scaled in all the resulting images to be between 0 and
1. One can see that all the six methods are able to identify
the first two rows of anomalies, but OSKLAD in EKFS can
identifies anomalies with much less noise (clean background)
and it is also able to detect the small targets in the third row.

5. CONCLUSIONS

In the proposed work, to achieve optimality in kernel-based
feature selection for anomaly detection using SVDD, the Q-
CLP problem is optimally solved in a new finite space called
the Empirical Kernel Feature Space (EKFS) instead of the
RKHS. Experimental result show that by optimally selecting
features, significant improvements can be made in hyperspec-
tral anomaly detection in EKFS rather than the original input
space.
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